Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gray, David A (Ed.)The lifetime fitness of an individual is determined by the integrated results of survival and reproduction. Improving our understanding of variation in survival senescence within and between species will therefore provide greater insight into the evolution of different life history strategies. Survival is influenced by multiple factors, consequently, variation in patterns of senescence is expected between individuals and sexes and across mating systems and the continuum of life history strategies. To date there is little consensus regarding the mechanisms driving the evolution of sex differences in actuarial senescence, necessitating the need for studies of sex-specific senescence for species across a wide range of life histories. The Weddell seal is a species of long-lived mammal that displays moderate polygyny and little sexual size dimorphism, which makes it an unusual species compared to other long-lived mammals that share the polygynous mating system. Here we used 37 years of data for 1,879 female and 1,474 male Weddell seals from Erebus Bay, Antarctica, to estimate and compare sex-specific patterns of survival rates using basis splines which allow flexible modeling of age-specific patterns. We found that males had lower rates of survival throughout life and higher rates of actuarial senescence after early adulthood compared to females. These results add to our understanding of sex-specific survival rates in the species and contribute information for a long-lived, polygynous species that should aid in achieving a broader understanding of aging between sexes and across the tree of life.more » « lessFree, publicly-accessible full text available January 16, 2026
-
1. Identifying and accounting for unobserved individual heterogeneity in vital rates in demographic models is important for estimating population-level vital rates and identifying diverse life-history strategies, but much less is known about how this individual heterogeneity influences population dynamics. 2. We aimed to understand how the distribution of individual heterogeneity in reproductive and survival rates influenced population dynamics using vital rates from a Weddell seal population by altering the distribution of individual heterogeneity in reproduction, which also altered the distribution of individual survival rates through the incorporation of our estimate of the correlation between the two rates and assessing resulting changes in population growth. 3. We constructed an integral projection model (IPM) structured by age and reproductive state using estimates of vital rates for a long-lived mammal that has recently been shown to exhibit large individual heterogeneity in reproduction. Using output from the IPM, we evaluated how population dynamics changed with different underlying distributions of unobserved individual heterogeneity in reproduction. 4. Results indicate that the changes to the underlying distribution of individual heterogeneity in reproduction cause very small changes in the population growth rate and other population metrics. The largest difference in the estimated population growth rate resulting from changes to the underlying distribution of individual heterogeneity was less than 1%. 5. population level compared to the individual level. Although individual heterogeneity in reproduction may result in large differences in the lifetime fitness of individuals, changing the proportion of above- or below-average breeders in the population results in much smaller differences in annual population growth rate. For a long-lived mammal with stable and high adult-survival that gives birth to a single offspring, individual heterogeneity in reproduction has a limited effect on population dynamics. We posit that the limited effect of individual heterogeneity on population dynamics may be due to canalization of life-history traits.more » « less
-
1. Life history theory predicts allocation of energy to reproduction varies with maternal age, but additional maternal features may be important to the allocation of energy to reproduction. 2. We aimed to characterize age-specific variation in maternal allocation and assess the relationship between maternal allocation and other static and dynamic maternal features. 3. Mass measurements of 531 mothers and pups were used with Bayesian hierarchical models to explain the relationship between diverse maternal attributes and both the proportion of mass allocated by Weddell seal mothers, and the efficiency of mass transfer from mother to pup during lactation as well as the weaning mass of pups. 4. Our results demonstrated that maternal mass was strongly and positively associated with the relative reserves allocated by a mother and a pup's weaning mass but that the efficiency of mass transfer declines with maternal parturition mass. Birthdate was positively associated with proportion mass allocation and pup weaning mass, but mass transfer efficiency was predicted to be highest at the mean birthdate. The relative allocation of maternal reserves declined with maternal age but the efficiency of mass transfer to pups increases, suggestive of selective disappearance of poor-quality mothers. 5. These findings highlight the importance of considering multiple maternal features when assessing variation in maternal allocation.more » « less
An official website of the United States government
